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Abstract—This paper investigates a beamforming scheme de-
signed to minimize the symbol error probability (SEP) for a
legitimate user while guaranteeing that the likelihood of an eaves-
dropper correctly recovering symbols remains below a predefined
threshold. The focus is on finding an optimal beamforming
vector for binary antipodal signal detection in multiple-input
multiple-output (MIMO) Gaussian wiretap channels. Finding
the optimal beamforming vector is a non-convex problem, and
thus conventional computationally efficient algorithms for convex
problems cannot be applied in this context. To that end, our
proposed algorithm relies on Karush–Kuhn–Tucker (KKT) con-
ditions and the generalized eigen-decomposition method to find
an exact solution. The numerical results are presented to assess
the performance of the proposed method for various scenarios.

Keywords—Physical layer security, MIMO Gaussian wiretap
channel, minimum symbol error probability, antipodal beam-
forming, KKT conditions, generalized eigen-decomposition.

I. INTRODUCTION

The security of wireless communication has been a promi-
nent concern. To that end, recent advancements in physical
layer security, such as beamforming and artificial noise in-
jection, have been proposed as effective strategies for en-
hancing wireless security [1]. These approaches leverage the
information-theoretic secrecy properties of physical communi-
cation channels, initially pioneered by Wyner for the wiretap
channel [2]. In this context, the transmitter, Alice, wants to
transmit confidential information to the legitimate receiver,
Bob, while protecting it from potential eavesdroppers like
Eve. Wyner demonstrates that, it is feasible to establish a
reliable and secure communication channel in the presence of
eavesdroppers, particularly when the eavesdropper’s signal-to-
noise ratio (SNR) is lower than that of the legitimate receiver.

As high-capacity multiple-input-multiple-output (MIMO)
communication systems have evolved, numerous studies have
effectively characterized the secrecy capacity of such systems.
Secrecy capacity is the maximum transmission rate at which
the eavesdropper cannot decipher any information. In this
paper, instead of secrecy capacity, a beamforming scheme is
designed to minimize the symbol error probability (SEP) for
a legitimate user while guaranteeing that the likelihood of an
eavesdropper correctly recovering symbols remains below a
predefined threshold. Specifically, this paper is focused on
finding an optimal beamforming vector for binary antipodal

signal detection in MIMO Gaussian wiretap channels. Finding
the optimal beamforming vector is a non-convex problem,
and thus conventional computationally efficient algorithms for
convex problems cannot be applied in this context. To that end,
our proposed algorithm relies on Karush–Kuhn–Tucker (KKT)
conditions and the generalized eigen-decomposition method to
find an exact solution. The numerical results are presented to
assess the performance of the proposed method for various
scenarios.

II. RELATED WORK

Some representative efforts to obtain closed-form solutions
for the secrecy capacity of the MIMO Gaussian wiretap
channel are discussed in [3], [4]. Various approaches aim-
ing to achieve secrecy capacity have concentrated on the
determination of the transmit covariance matrix [5], [6].
These solutions employ iterative procedures to tackle the non-
convexity nature of the problem. To reduce complexity, linear
beamforming techniques have also been proposed to exploit
transmit diversity via weighting the information stream [7],
[8]. While secrecy capacity serves as a common metric, its
practical realization and measurement pose challenges in real-
world scenarios utilizing practical non-Gaussian codes. In
contrast, we describe an optimization framework for finding an
optimal beamforming vector that minimizes the symbol error
rate rather than secrecy capacity. To the best of the author’s
knowledge, there has been no study considering the SEP
minimization-based beamforming scheme for MIMO Gaussian
wiretap channel.

III. MIMO BEAMFORMING IN GAUSSIAN WIRETAP
CHANNEL

In this section, we characterize symbol error probability-
based MIMO beamforming for binary antipodal signal detec-
tion and present the MIMO Gaussian wiretap channel.

A. Symbol Error Probability
Consider a MIMO communication system with N transmit

antennas and K receive antennas. The MIMO received signal
y can be expressed as:

y = HWs + n, (1)

where H ∈ CK×N is the channel matrix between transmitter
and receiver, W ∈ CN×M is the beamforming matrix. M is
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Fig. 1: MIMO Gaussian wiretap channel.

the number of information symbols and M does not exceed
min{N,K}. s = [s1, ..., sM ]T is the information intended for
the receiver, n ∈ CK ∼ CN (0, N0I) is the complex Gaussian
noise. For analysis, we assume H is known, i.e., the full
channel state information is available at both the transmitter
and receiver side [9]–[11].

Binary Antipodal Signal Detection. In this paper, we limit
our discussion to sending binary antipodal signals, i.e., s ∈
{a,−a}, where a = [a1, ..., aM ]T is an arbitrary complex M -
dimensional vector and a1, ..., aM are discrete constellation
points.

To determine whether a or -a was sent given that y is re-
ceived, we use the following maximum a posteriori probability
(MAP) test [12]:

<
{
yH(HWa)

}
‖HWa‖

≥ 0 if ŝ = a,

<
{
yH(HWa)

}
‖HWa‖

< 0 if ŝ = −a,

(2a)

(2b)

where ŝ is the detected signal of s. We assume the prior
probabilities of the two signals a and −a to be equal. Thus,
the error probabilities are the same whether the symbol vector
a or −a was transmitted and can be derived as follows

Pe = P (ŝ = a|s = −a) = P (ŝ = −a|s = a),

= Q

(
‖ HWa ‖2√

N0/2

)
.

(3)

where Q(x) = 1√
2π

∫∞
x
e−

t2

2 dt is the Gaussian Q-function.

B. MIMO Gaussian Wiretap Channel

The MIMO wiretap channel is shown in Fig. 1. The number
of antennas at the transmitter (Alice), the legitimate receiver
(Bob), and the eavesdropper (Eve) are N , KB , and KE ,
respectively. We call the channel between Alice and Bob the
primary channel (HB ∈ CKB×N ), while the channel between
Alice and Eve is the eavesdropper channel (HE ∈ CKE×N ). In
this scenario, Alice transmits her confidential message to Bob,
and Eve eavesdrops on the information being conveyed from
Alice to Bob without causing any disruption to the primary
channel [2]–[4].

Following the system model from Eq. (1), the received
signals at Bob and Eve are:

yB = HBWs + nB , (4)
yE = HEWs + nE , (5)

where s ∈ {a,−a}. nB ∼ CN (0, NBI) and nE ∼
CN (0, NEI) are the zero-mean complex Gaussian white
noises with powers NB and NE for the channels of Bob and
Eve, respectively. Furthermore, the input signal is subjected to
a power constraint P such that Tr(WWH) ≤ P [13], [14].

IV. SEP MINIMIZATION FOR BINARY ANTIPODAL
BEAMFORMING

A. Problem Formulation

We focus on enhancing reliability and signal-to-noise ratio
rather than maximizing the bit rate. Hence, we investigate a
special case of binary antipodal signals, where the information
symbols are ±a with a ∈ C are discrete constellation points.
We can express the binary antipodal signals as s = wa or
s = w(−a), where w ∈ CN is the beamforming vector.

Based on (3), the error probabilities of Bob and
Eve are PBe = Q

(
‖ HBwa ‖2 /

√
NB/2

)
and PEe =

Q
(
‖ HEwa ‖2 /

√
NE/2

)
, respectively.

Our objective is to minimize Bob’s error probability while
ensuring that Eve’s error probability exceeds a predetermined
threshold, all while meeting the power constraint. Conse-
quently, we formulate the following optimization problem:

min
w

Q

(
‖ HBwa ‖2√

NB/2

)
(6a)

s.t. Q

(
‖ HEwa ‖2√

NE/2

)
≥ D, (6b)

‖w‖22 ≤ P, (6c)

where HB ∈ CKB×N , HE ∈ CKE×N , w ∈ CN , a ∈ C,
D ∈ [0, 0.5], and P > 0 is the transmitted signal power.

Let w̄ = w√
P

, the problem (6) can be rewritten as

min
w̄

Q
(√

2P/NB ‖ HBw̄a ‖2
)

(7a)

s.t. Q
(√

2P/NE ‖ HEw̄a ‖2
)
≥ D, (7b)

‖w̄‖22 ≤ 1, (7c)

Due to the Gaussian Q-function being a strictly decreasing
function, an equivalent problem of (7) is:

min
w̄

− ‖ HBw̄ ‖22 (8a)

s.t. ‖ HEw̄ ‖22≤
(√

NE/(2P )Q−1(D)/|a|
)2

, (8b)

‖w̄‖22 ≤ 1, (8c)

The objective of the problem (8) is a concave function, where
the feasible space of this problem is compact and convex.
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Therefore, an optimal solution must lie at extreme points
[15]. Finding these extreme points is challenging, hence KKT
conditions are used to develop an efficient algorithm.

B. KKT Conditions

The gradient of the Lagrangian can be derived as follows

∇w̄L(w̄, λ1, λ2) = 2(λ1H
H
EHE −HH

BHB)w̄ + 2λ2w̄. (9)

Therefore, the KKT conditions of the problem (8) are:

‖HEw̄
∗‖22 −

(√
NE/(2P )Q−1(D)

|a|

)2

≤ 0, (10a)

‖w̄∗‖22 − 1 ≤ 0, (10b)
λ∗1, λ

∗
2 ≥ 0, (10c)

λ∗1

‖HEw̄
∗‖22 −

(√
NE/(2P )Q−1(D)

|a|

)2
 = 0, (10d)

λ∗2
(
‖w̄∗‖22 − 1

)
= 0, (10e)

(λ∗1H
H
EHE −HH

BHB)w̄∗ + λ∗2w̄
∗ = 0. (10f)

An optimal solution must satisfy the KKT conditions. There
are 4 cases corresponding to the possibly optimal values of λ∗1
and λ∗2.
• Case 1: For λ∗1 = 0 and λ∗2 = 0,

‖HEw̄
∗‖22 −

(√
NE/(2P )Q−1(D)/|a|

)2

< 0, (11a)

‖w̄∗‖22 − 1 < 0, (11b)

(HH
BHB)w̄∗ = 0. (11c)

• Case 2: For λ∗1 = 0 and λ∗2 > 0,

‖HEw̄
∗‖22 −

(√
NE/(2P )Q−1(D)/|a|

)2

< 0, (12a)

‖w̄∗‖22 − 1 = 0, (12b)

HH
BHBw̄

∗ = λ∗2w̄
∗. (12c)

• Case 3: For λ∗1 > 0 and λ∗2 = 0,

‖HEw̄
∗‖22 −

(√
NE/(2P )Q−1(D)/|a|

)2

= 0, (13a)

‖w̄∗‖22 − 1 < 0, (13b)

HH
BHBw̄

∗ = λ∗1H
H
EHEw̄

∗. (13c)

• Case 4: For λ∗1 > 0 and λ∗2 > 0,

‖HEw̄
∗‖22 −

(√
NE/(2P )Q−1(D)/|a|

)2

= 0, (14a)

‖w̄∗‖22 − 1 = 0, (14b)

(HH
BHB − λ∗1HH

EHE)w̄∗ = λ∗2w̄
∗. (14c)

C. Beamforming Design Algorithm

For our problem, the solutions should be achieved at ex-
treme points, i.e., optimal points have to be on the boundary
of constraint sets, as mentioned above. Therefore, case 1 is
removed since its feasible points belong inside of constraint
sets. It noted that we can find the optimal exact solution for
w̄ by investigating through the cases 2, 3, and 4, separately.

For cases 2 and 3, the solutions can be obtained by solving
the generalized eigenvalue problems as HH

BHBw̄ = λ2w̄
and HH

BHBw̄ = λ1H
H
EHEw̄, respectively. For case 4, an

exhaustive search entails a grid search through all possible
values of λ1 in the interval [0, L] with a resolution of ε.
Here, L represents the size of the search space. The opti-
mal solution is obtained by solving the eigenvalue problem
(HH

BHB − λ1H
H
EHE)w̄ = λ2w̄ for each λ1. Subsequently,

the solutions for w̄ are checked to ensure they meet the
provided constraints. For a detailed algorithm, please refer to
Algorithm 1.

Time complexity of Algorithm 1. In terms of complexity,
our proposed algorithm involves finding all eigenvalues for a
dense N×N matrix, which is of O(N3). Additionally, in case
4, we need to search through λ1, adding to the complexity.
Therefore, the overall complexity of our algorithm can be
expressed as O(LN3), where L represents the size of the
search space.

Algorithm 1 Antipodal Beamforming.

Input: HB , HE , NB , NE , D, P , a
Consider cases 2, 3, and 4 to determine the optimal w̄∗

Case 2:
1: Find eigenvector set, E2, corresponding to HH

BHBw̄ =
λ2w̄

2: if λ2 > 0 and w̄2 ∈ E2 minimizes (7a) and satisfies (12a),
(12b) then

3: PBe2 = Q
(√

2P/NB ‖ HBw̄2a ‖2
)

4: else
5: PBe2 = +∞
6: end if

Case 3:
7: Find generalized eigenvector set, E3, corresponding to

HH
BHBw̄ = λ1H

H
EHEw̄

8: if λ1 > 0 and w̄3 ∈ E3 minimizes (7a) and satisfies (13a),
(13b) then

9: PBe3 = Q
(√

2P/NB ‖ HBw̄3a ‖2
)

10: else
11: PBe3 = +∞
12: end if

Case 4:
13: Exhaustive search with the resolution of ε through all

values of λ1 ∈ [0, L]
14: For each value of λ1, find eigenvector set, E4, correspond-

ing to (HH
BHB − λ1H

H
EHE)w̄ = λ2w̄

15: if λ2 > 0 and w̄4 ∈ E4 minimizes (7a) and satisfies (14a),
(14b) then

16: PBe4 = Q
(√

2P/NB ‖ HBw̄4a ‖2
)

17: else
18: PBe4 = +∞
19: end if
Output: w̄∗ = w̄i∗ where i∗ = mini P

B
ei =

mini(P
B
e2 , P

B
e3 , P

B
e4) and w̄i ∈ {w̄2, w̄3, w̄4}
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Fig. 2: Illustration of the optimal case of (a) setup 1, (b) setup 2, and setup 3 in R2.

D. Case Analysis
We present the analytical results based on different cases

in Section IV-B. To simplify the analysis, the real-valued
deterministic channel matrices are used. Figure 2 shows the
objective function contours and constraint boundaries of three
different setups. Note that in all three figures, the symmetry
of the quadratic objective function determines two symmetric
optimal points. Also, all the optimal points are the extreme
points as predicted for an optimization problem with a concave
objective the feasible space is compact and convex set.

Setup 1. We consider the system parameters as HB =[
0.21 0.011
0.09 0.3

]
, HE =

[
0.01 0.02
0.017 0.01

]
, D = 0.346, P = 1

W, NB = NE = 0.01 W, N = KB = KE = M = 2. BPSK
modulation constellations are used as a ∈ {−1, 1}. For case
2, PBe2 = 0.0035, PEe2 = 0.4427 (i.e., the error probability of
Eve), w̄2 =

[
−0.8784 0.4779

]T
, and λ2 = 0.0363. For case

3, there exists no w̄3 that satisfies the constraint (13a). For case
4, PBe4 = 2.0542×10−6, PEe2 = 0.346, w̄4 =

[
0.475 0.88

]T
,

λ1 = 1.5, and λ2 = 0.0361. Overall, case 4 is selected
and presented in Figure 2a. Despite similar channel matrix
directions for Bob and Eve in Figure 2a, Eve’s error probability
worsens due to her channel’s high attenuation coefficient. Case
4 is rare in practice as optimal points must be among extreme
points generated by specific constraints.

Setup 2. The same setting parameters as the setup

1 are considered, except HB =

[
0.21 0.011
0.09 0.3

]
, HE =[

−0.01 0.02
0.01 0.01

]
, and D = 0.2. For case 2, PBe2 = 2.0541 ×

10−6, PEe2 = 0.3960, w̄2 =
[
0.4779 0.8784

]T
, and λ2 =

0.1061. For case 3 and case 4, there exists no w̄3 and w̄4 that
satisfies the constraint (13a) and (14a), respectively. Hence, we
choose case 2 and describe in Figure 2b. In this scenario, Bob
and Eve’s channel matrices are highly orthogonal. Using the
beamforming vector directs the signal mainly to Bob, reducing
Bob’s error probability but increasing Eve’s.

Setup 3. We keep the same setting parameters as the setup

1, except HB =

[
0.21 0.015
0.1 0.12

]
, HE =

[
0.01 0.071
0.01 0.01

]
, and

D = 0.3246. For case 2 and case 3, there exists no w̄2 and w̄3
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Fig. 3: Symbol error probability comparison of Bob and
Eve versus SNR in deterministic real orthogonal direction
channels.

that satisfies the constraint (12a) and (13a), respectively. For
case 4, PBe4 = 2.9105×10−4 with respect to λ1 = 1 and λ2 =

0.0053. PEe4 = 0.3246 and w̄4 =
[
−0.9592 −0.2828

]T
.

Accordingly, case 4 is selected and represented in Figure 2c.

V. NUMERICAL RESULTS

This section presents numerical results illustrating the sym-
bol error probability of MIMO Gaussian wiretap channels.
These results are obtained using the proposed antipodal beam-
forming scheme in Algorithm 1.

In Figure 3, we analyze Bob and Eve’s symbol error
probability comparison versus SNR, where N = KB =
KE = M = 2. The BPSK modulation is utilized with
a ∈ {−1, 1}, D = 0.2, and NB = NE = 0.1 W. Here, we

consider HB =

[
0.21 0.011
0.09 0.3

]
and HE =

[
−0.21 0.011
−0.09 0.3

]
as deterministic orthogonal direction channels. A notable trend
observed for both Bob and Eve is that their performance
improves considerably with increasing SNR. Nevertheless,
Bob exhibits a lower symbol error probability compared to
Eve. This difference arises from the beamforming vector being
optimized to direct the information signal towards Bob.
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versus SNR in deterministic real Gaussian channels.

-10 -8 -6 -4 -2 0 2

SNR (dB)

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

S
y
m

b
o
l 
E

rr
o
r 

P
ro

b
a
b
ili

ty

Bob, K
B

 = 2

Eve, K
E

 = 2

Eve, K
E

 = 3

Eve, K
E

 = 5

Eve, K
E

 = 7

Fig. 5: Symbol error probability of Bob and Eve versus SNR
with varying KE in stochastic real Gaussian channels.

Figure 4 illustrates a comparison of symbol error probabil-
ities for Bob and Eve as a function of SNR, using the same
configuration as in Figure 3. Here, we set D = 0.3, NB =

NE = 0.01 W, and consider HB =

[
0.0262 0.0049
−0.1598 −0.2414

]
and HE =

[
0.0498 0.0194
−0.0446 −0.0758

]
as deterministic real Gaus-

sian channels. Consistent with the observations in Figure 3,
Bob’s performance significantly outperforms Eve’s. It should
be noted that constraints (13a) and (14a) only become active
at the brown point. Furthermore, as the SNR increases, none
of the scenarios under consideration yield a feasible solution.

The effect of increasing the number of antennas at the eaves-
dropper is illustrated in Figure 5 using the same setup as in
Figure 4. This result is obtained by averaging over realizations
of stochastic real Gaussian channels where hij ∈ N (0, 0.01).
The symbol error probability of Eve is observed to decrease
as the number of antennas increases. For KE ≥ 5, Eve’s
performance is notably high, indicating that she can intercept
almost all information from Alice. This phenomenon occurs
because beamforming is no longer effective at degrading the

eavesdropper’s reception in this scenario. Thus, the assurance
of information security through physical layer techniques is
not guaranteed in such circumstances.

VI. CONCLUSION

This paper has presented a new beamforming scheme for
MIMO Gaussian wiretap channels, aiming to minimize the
symbol error probability for legitimate users while limiting the
eavesdropper’s ability to recover symbols above a predefined
threshold. The proposed algorithm, based on Karush-Kuhn-
Tucker conditions and the generalized eigen-decomposition
method, offers an exact solution to the non-convex optimiza-
tion problem. Through extensive numerical simulations, we
have demonstrated the efficacy of our approach across various
scenarios.
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